

Risk Assessment for Cyber-Physical Smart Grid Systems

The SPARKS project approach

Martin Hutle

Symposium on Innovative Smart Grid Cybersecurity Solutions 2017, Vienna, Austria

Risk assessment for the smart grid

- The smart grid is a networked cyber-physical system
 - heterogeneous (technology, ownership, functionality)
 - complex dependencies (data network, grid, administrative)
- An adequate risk assessment considers
 - − multi-stage attacks→ SPARKS demo
 - combined attacks
 - → Ukraine 2015

The SPARKS risk assessment

approach

SOCKS

- ISO 27005 framework
 - asset driven approach
- we populate various steps with smart grid specific implementations
- partially from existing methods where useful
 - SGIS Toolbox
 - HMG IS1
- own methods
- supporting tools

Identifying assets and security objectives

- In the smart grid the most important assets are located at the edge between "cyber" and "physical"
 - integrity has direct impact on grid stability
 - standard IT: confidentiality is more in the focus
- Start analysis with focus on these primary assets
 - security analysis ("likelihood")
 - consequence and impact analysis
- Reduces the number of assets for the analysis
- Secondary assets are implicitly identified by the threat analysis

Model-based approach for asset identification and threat analysis

- Description in the Smart Grid Architecture Model (SGAM)
- Precise language (Ontology representation of SGAM elements)
- Tool:
 - Plug-in for Enterprise Architect
 - Export to RDF

Handling the complexity of threat analysis

- Complex attack vectors
 - multi-stage attacks
 - combined attacks
- Many assessment methods look on individual assets only
 - neglects these interdependencies
 - are not able to capture countermeasures such as isolation or zoning
- Attack trees
 - allow representation of these scenarios
 - become quickly intractable with growing system size
- SPARKS: Tool-based approach
 - use machine-based reasoning to identify attack vectors
 - implicit representation
 - uses ontology-based description
 - reusability
 - combination with vulnerability databases, threat catalogues

Impact categories

Category	PM	Р	ICTP	ESCO	TSO	DSO
Economic		•		•	•	•
Safety	•					•
Quality of						
Supply						
Infrastructures	•					
Regulatory	•		•	•	•	•
Reputational		•	•	•	•	•
Data						
Protection and		•	•	•	•	•
Privacy						
Equipment		•	•		•	•
Population	•					

Impact is stakeholder-dependent!

policy makers (PM), producers (P), ICT equipment producers (ICTP), energy service companies (ESCO), transmission system operators (TSO), distribution system operators (DSO)

Impact analysis

- Expert Analysis
- Safety and Security Analysis
 - Event tree analysis
 - FMVEA
 - System theoretic process analysis (STPA)
 - Bayesian networks.
- System analysis
 - mathematical (differential) equations to model the electrical system
 - looks for analytical solutions to these equations
- Simulation
 - allows solutions for systems that are too complex for an analytical solution
 - allows combination with data network simulation (co-simulation)
 - allows including real hardware in the simulation (hardware-in-the-loop).

SPARKS Impact Analysis

- Co-simulation environment for MV grid
 - SWW Holenbrunn area
 - attack: price manipulation scenario
- System theoretic impact analysis on LV grid
- Simulation of LV grid
 - simulation with hardware in the loop
 - voltage control use-case
- Customized impact tables

Risk treatment

- Problem with existing risk assessment methods: missing link between technical risk analysis and mitigation measures
 - often measures are based on risk level only
 - connection to actual threats gets lost
- Semantic threat graphs
 - offer possibility to deduce tailored countermeasures by machine-based reasoning
 - combination of attack graphs and semantic threat graphs
 - input from best-practice catalogues

Summary

- SPARKS risk assessment
 - ISO 27005 framework
 - context establishment using SGAM modelling
 - security analysis with machine-based reasoning
 - impact analysis: simulation, analytical
 - deduction of countermeasures with semantic threat graphs
- Exercised the method on the SPARKS demonstration sites
 - Stadtwerke Wundsiedel
 - NIMBUS Microgrid

Thank you for your attention!

Dr. Martin Hutle

Deputy Head of Department
Product Protection and Industrial Security

Fraunhofer AISEC

Parkring 4

85748 Garching bei München, Germany

Phone: +49 89 3229986-135

Fax: +49 89 3229986-222

E-Mail: martin.hutle@aisec.fraunhofer.de

Internet: www.aisec.fraunhofer.de