



# Identifying and Managing Risks in Interconnected Utility Networks

The HyRiM Risk Management Process
Stefan Schauer



Smart Grid Symposium Vienna, 13.03.2017





- Motivation
- Risk Management and the ISO 31000
- HyRiM Risk Management Process
- Conclusion





- Motivation
- Risk Management and the ISO 31000
- HyRiM Risk Management Process
- Conclusion



## Motivation



- Risk assessment and risk management is a core duty for utility providers
  - Utility providers operate critical infrastructures
  - Responsible for the supply of large number of people with different goods
  - Incidents within/affecting utility providers might have huge economic and societal impacts
- Numerous risk assessment and risk management tools already exist
  - Based on well-established standards and guidelines (e.g. ISO 31000)
  - Often focusing on a specific field (e.g. IT Security ISO 27005,
     Supply Chain Management ISO 28000, Port Security ISO 20858)
  - Often designed for businesses and not the special requirements of utility providers or critical infrastructures
  - Mostly a matter of best practices



## Motivation



- Networks operated by utility providers are heavily connected among each other
  - Utility network (e.g. power lines, water pipes, oil pipelines, etc.)
  - Control networks (e.g. SCADA networks, smart grids, etc.)
  - ICT networks (e.g. office networks, communication networks, intranet, etc.)







- Motivation
- Risk Management and the ISO 31000
- HyRiM Risk Management Process
- Conclusion



# ISO 31000



- World-wide leading standard for risk management is the ISO 31000
  - Follows a very generic approach on risk management
  - Ubiquitously applicable on every kind of organisation
  - More specific standards are building on and extending the ISO 31000 (e.g., ISO 27005, ISO 28000, ISO 20858, etc.)
- ISO 31000 describes a two-tier structure
  - Operative risk management process provides a generic description of the different steps towards risk management
  - Organizational risk management framework required to implement the risk management process within a company
- In HyRiM we extend the ISO 31000 towards a more mathematically-based approach, including concepts and algorithms developed in the project



# ISO 31000









- Motivation
- Risk Management and the ISO 31000
- HyRiM Risk Management Process
- Conclusion



# HyRiM RM Process



- Requirements of utility providers have changed
  - Number of cyber-physical systems increases
     (e.g., SCADA networks, Industrial Control Systems)
  - Threats evolve more rapidly and become more complex (e.g., Advanced Persistent Threats – APT)
  - Intentional threats became more popular in recent years
     (e.g., terrorism, cyber-terrorism/hacktivists, espionage, etc.)
- Threats affecting one part of a utility provider can propagate through the network and affect other, distant parts, too
  - Malware infection on the ICT network might cause the failure of a SCADA system and thus affect the utility network itself
  - Security issue of a SCADA system might give access to business data handled in the ICT network
- Additionally, utility providers are interconnected and interacting with each other



# HyRiM RM Process



- Novel approaches towards security and risk management have to be identified to address these issues
  - Solutions for each network level exist and are applied separately
  - "Hybrid" risk management methodologies are required, providing a holistic overview (i.e. looking at several networks simultaneously)
  - Interconnections and the related cascading effects need to be considered
- Sole focus on technical threats and technical solutions is no longer adequate
  - Social engineering is a major aspect in many attack strategies
  - Organizational factors are essential for every security measure or security strategy performed in an organization
- Security and risk management methodologies explicitly have to take societal factors into account



# HyRiM RM Process









- Motivation
- Risk Management and the ISO 31000
- HyRiM Risk Management Process
- Conclusion



# Conclusion



- Utility operators live in a highly uncertain environment
  - More complex and rapidly changing threat landscape
  - Consequences of events are not assessed easily (e.g., cascading effects)
- Standard risk assessment and risk management process are often not enough
- Novel risk management process developed in the HyRiM project
  - Extension of the standard ISO 31000 process
  - Strongly relying on qualitative data/information
  - Application of mathematical tools and structured approaches
  - Implementation of game theory to identify optimal mitigation actions
- Goal is to support the operational and management level to make better decisions





# Identifying and Managing Risks in Interconnected Utility Networks

# The HyRiM Risk Management Process Stefan Schauer

stefan.schauer@ait.ac.at

AIT Austrian Institute of Technology Lakeside B10a 9020 Klagenfurt Austria **Smart Grid Symposium** 

Vienna, 13.03.2017





- Motivation
- Risk Management and the ISO 31000
- HyRiM Risk Management Process
- Conclusion
- BACK-UP: Details on the HyRiM RM Process



# **Process Overview**







# **Establishing the Context**



# Establishing the Context

**External Context** 

Internal Context

Context of the RM Process Criteria of the RM Process

- Identify all interrelations with internal and external stakeholders
  - Internal technical, organizational and social aspects
     (e.g., communication channels, dependencies between different technical and social networks)
  - External interrelations and interdependencies
     (e.g., external organizations as resource providers or regulatory bodies)
- Identify the relevant framework for the risk management process
  - Parts of the organization which are covered in the risk management process
     (e.g., organizational units, depth of the risk assessment process)
  - Criteria to evaluate the significance of a specific risk based on organization's resources, objectives and goals or general characteristics
     (e.g., definition how the likelihood or the impact of an event is characterized)



## Risk Identification



#### Risk Identification

Asset Identification Threat Identification

Vulnerability Identification

- Identify the relevant assets of the organization's infrastructure
  - Based on the internal context (cf. "Context Establishment")
  - Focus on the interconnections between assets
- Identify all potential threats and respective vulnerabilities affecting the organization's infrastructure
  - Obtain a structured view on all potential threats and vulnerabilities
  - Application of a specific Threat Awareness Architecture
- Information can/should be collected from different sources
  - External (e.g., existing threat catalogues or online threat databases)
  - Internal (e.g., expert knowledge or information on past incidents)



# Risk Analysis



# Risk Analysis Threat Scenario Definition Consequence Analysis Analysis Analysis

- Identify a fine-grained list of potential threat scenarios
- Determine the potential consequences for the manifestation of all threat scenarios
  - Quantitative (e.g., using percolation theory or a co-simulation approach)
  - Qualitative (e.g., by experts from within the organization or external advisors)
- Determine the potential likelihood for the manifestation of all threat scenarios
  - In general fully qualitative estimation supported using information from external sources (e.g., reports containing statistical information on the likelihood of specific events)
- All information is gathered in histograms or distribution functions
  - Capturing of uncertainty and preventing loss of information



# Risk Analysis



Risk Analysis

Threat Scenario Definition Consequence Analysis Likelihood Analysis





#### Damage (Histogram)





## Risk Evaluation



# Risk Risk Risk Risk Level Evaluation Selection Ranking Determination

- Select a list of most relevant risks (based on threat scenarios)
- Determine a ranking of the identified risks
  - Ordering according to their respective consequences and likelihood
  - Comparing histograms is non-trivial (novel approach has bee identified)
- Create a graphical representation and a priority list of the identified risks
  - Each risk is placed within a risk matrix based on its consequences and likelihood
  - Risks having the most severe consequences together with the highest likelihood are located at the upper right corner of the matrix



# **Risk Evaluation**



#### Risk Evaluation

Risk Selection Risk Ranking Risk Level Determination

#### ranking (w.r.t. ≤-ascending order)

|             | 1 | 2 |                | rį             |                | rj             |                | m |
|-------------|---|---|----------------|----------------|----------------|----------------|----------------|---|
| Impact:     |   |   | T <sub>2</sub> |                |                | T <sub>1</sub> | T <sub>3</sub> |   |
| Likelihood: |   |   | T <sub>2</sub> | T <sub>1</sub> | T <sub>3</sub> |                |                |   |





## Risk Treatment



| Risk      | Attack     | Defense    | Mitigation | Implementation |  |
|-----------|------------|------------|------------|----------------|--|
| Treatment | Strategies | Strategies | Actions    | Strategy       |  |

- Identify the risks that need to be mitigated
  - Usually these are the highest-ranked risks
  - Threat scenarios describe potential attack strategies for these risks
- Identify possible mitigation actions (defense strategies) to counter the respective attack strategies
  - Reducing the consequences of the specific risk
     (e.g., by lowering the number of affected assets)
  - Reducing the likelihood of the specific risk
     (e.g., by making it harder to exploit specific vulnerabilities)
  - Letting a risk vanish completely (e.g., by closing specific vulnerabilities)



## Risk Treatment



| Risk      | Attack     | Defense    | Mitigation | Implementation |
|-----------|------------|------------|------------|----------------|
| Treatment | Strategies | Strategies | Actions    | Strategy       |

- Determine the effect of a specific defense strategy on a single attack strategy
  - Rerunning the consequence analysis for the organization's asset structure (assume that the specific defense strategy has been implemented)
  - Evaluate all possible combinations of attack and defense strategies
  - Results are fed into the game-theoretic framework
- Game-theoretic framework provides an optimal security strategy
  - In general a mixture of the single mitigation actions
  - Describes the different frequencies at which these mitigation actions have to be performed
  - Organizational structure (job scheduling) is required to support the correct implementation of the mitigation actions